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It has been shown [i] that flows with thin closed separation zones can be calculated by 
means of boundary-layer equations if the inverse problem for these equations is considered 
and if interaction with the external inviscid flow is taken into account. This approach is 
called the direct-inverse method and is commonly used to describe flows around profiles [2]. 
We have previously [3, 4] developed a computational procedure that can be used to calculate 
laminar and turbulent separation flows in an interior section of a wide channel [3] and in a 
channel with a separator [4]. 

In the present article we use the direct-inverse method to analyze flows with heat 
transfer and swirl. Whereas the relationship between the dynamical and thermal character- 
istics have been well studied for nonseparation flows [5], it has not received adequate at- 
tention in the case of flows with separation. In particular, the increase in the heat fluxes 
in the vicinity of the reattachment point needs to be investigated in greater detail; the 
direct- inverse method should be useful in this regard. Here we consider laminar separation 
flow with heat transfer and show that the results of the calculations exhibit satisfactory 
agreement with the results of numerical solution of the Navier-Stokes equations and with 
experimental data [6]. 

In boundary-layer calculations for swirled flow the pressure across the layer is usually 
assumed to be constant, and nonseparation flow regimes are investigated [7]. In the present 
article we investigate swirled flows with separation on the assumption that the transverse 
pressure gradient in the boundary layer is equalized by centrifugal forces. Boundary-layer 
separation on a cylindrical surface is possible under these conditions. We also investigate 
self-similar solutions of the boundary-layer equations with swirl, specifically the self- 
similar solutions corresponding to flow with reverse currents. 

i. We investigate two types of laminar flows of an incompressible fluid: planar flow 
over a surface whose contour is described in Cartesian coordinates x, y by the equation 
y = r(x) and whose temperature differs from the freestream temperature, but with a tempera- 
ture factor close to unity, so that the fluid can be regarded as incompressible with a con- 
stant transport coefficient (Fig. la); axisymmetrical swirled flow in a channel whose wall 
contours are described in cylindrical coordinates x, y by the equations y = r• the plus 
sign corresponding to the upper wall, and the minus sign to the lower wall (Fig. Ib). The 
longitudinal scale of nonuniformity on the free surface or the length of the transition zone 
of the channel (L) is adopted as the characteristic length, and the freestream velocity or 
the duct entry velocity (U~) is taken as the characteristic velocity. The Reynolds number 
Re = U~L/~ (~ is the kinematic viscosity) is assumed to be large, and the transverse scale 
of nonuniformity of the surfaces are considered to be of the order of the boundary-layer 
thickness 6 [Ayr = 0(6)], so that the separation zones are thin. 

The flow is partitioned into viscous and inviscid regions, between which strong inter- 
action is possible; the separation zone is located within the viscous region. In the case 
of channel flow we assume that the characteristic length of the inviscid core is of the same 
order as the width of the channel, and 6+ ~ r+ - r_; in addition, we assume that r• ~ L. 
The flow in the viscous region is described by boundary-layer equations, for which (to avoid 
a singularity at the separation point) the inverse problem is solved, i.e., the displacement 
thickness is given, and the longitudinal pressure gradient is determined. The flow in the 
inviscid region is described by the Euler equations, which are solved in the linear approxima- 
tion for the stated problems. The necessary displacement thickness is determined from the 
condition for matching the solutions in the viscous and inviscid flow regions. 
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2. When the above-stated conditions are met, the boundary-layer equations are con- 
veniently written in the variables 

X = x ,  Y = ~ ( g - r ~ ) ,  U =  u, V = •  

where u and v a r e  t h e  components  o f  t h e  v e l o c i t y  v e c t o r  in  t h e  c o o r d i n a t e s  x and y ;  t h e  
upper  s i g n  c o r r e s p o n d s  t o  t h e  lower  w a l l  o r  f r e e  s u r f a c e ,  and t h e  lower  s i g n  c o r r e s p o n d s  t o  
t h e  uppe r  w a l l .  

D i s c a r d i n g  t e rms  O(6 /L)  = O(Re - 1 / 2 )  and h i g h e r  in  t h e  N a v i e r - S t o k e s  e q u a t i o n s  [Ayr = 
0 ( 6 ) ,  so t h a t  t h e s e  t e rms  i n c l u d e  t e rms  c h a r a c t e r i z i n g  t h e  d e v i a t i o n  o f  t h e  d i r e c t i o n  o f  t h e  
c o o r d i n a t e  Y from t h e  normal  t o  t h e  s u r f a c e ] ,  we o b t a i n  a s y s t e m  o f  e q u a t i o n s  d e s c r i b i n g  t h e  
b o u n d a r y  l a y e r  w i t h  s w i r l  and h e a t  t r a n s f e r :  

I V o  UOU/OX + VOU/OY = -- 1/90p/OX ~ F2/r~dr~/dX q- O-U/OY'; ( 2 . 1 )  

o p / a v  = • ( 2 . 2 )  

OU/OX + OV/OY = O; ( 2 . 3 )  

UOF/OX + VOF/OY = vO2F/OY2; ( 2 . 4 )  

UOT/OX + VOT/OY = v/Pr OZT/OY 2. ( 2 .5  ) 

Here p is the pressure, p is the density, T is the temperature, Pr is the Prandtl number, 
F = yw, and w is the circumferential component of the velocity vector. The energy equation 
(2.5) is written with allowance for the fact that the investigated flow involves an incom- 
pressible fluid with a temperature factor close to unity. 

We note that when swirl is absent (F ~ 0), the equations for the boundary layer on a 
surface of revolution coincide with the equations for a planar boundary layer in the given 
approximation [r T ~ L, Ayr~ = 0(6)]. Swirl can also be disregarded if it is weak or moderate, 
i.e., if F/U~r ~ i. Indeed, if follows from Eq. (2.2) that Ap = O(Re -I/2) and, hence, the 
variation of the pressure across the boundary layer is of the next higher order of smallness 
in comparison with the other terms in the equations. The term containing F on the right-hand 
side of Eq. (2.1) is also O(Re -I/2) and can be ignored. The influence of strong swirl on the 
flow is appreciable. For example, if F/U~r = O(Rel/4), all the terms in Eq. (2.1) are of 
the same order. However, an analysis of self-similar solutions (see Sec. 5 below) and the 
results of calculations by the direct-inverse method in cases where swirl induces flow sepa- 
ration show that a solution exists only for F/U=r < const Rel/4. The system (2.1)-(2.5) 
can therefore be used to describe swirled flows with a parameter F in the range 1 ~ F/U~r 
Re I/4. The effect of variation of the pressure across the boundary layer is not as signif- 
icant here as the effect associated with curvature of the surface. 

Outside the boundary layer, Eqs. (2.1)-(2.5) go over to 

2 3  U~OUJOX = -- (t/9)OpjOX + F~/r~drg/dX; ( 2 . 6 )  
~ 3  (t/p)OpJOY = • F~/r~ ( 2 . 7 )  

(the subscript e refers to the values of the parameters in the limit Y + ~). Eliminating the 
pressure in Eq. (2.1) by means of (2.2), (2.6), and (2.7), we arrive at the equation 
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uau/ax + vau/oY = + r )/r}dr /dX • O (r2 (2 .8)  -- -- F~)/r~dY /OX + vOfU/OY 2 

(~ = UedUe/dX).  Consequent ly ,  the  r e l a t i o n s  ( 2 . 3 ) - ( 2 . 5 ) ,  (2 .8)  must be i n t e g r a t e d  in order  
to  c a l c u l a t e  the  boundary l a y e r .  

The boundary c o n d i t i o n s  have the  form 

U=V=F=0, T=Tw for Y=O, OU/OY~O, F~F, (2.9) 

T~ Te for Y~, 

where T w is the temperature of the surface, and F e and T e are the circulation and temperature 
in the external flow on the contour corrected for the displacement thickness, thus ensuring 
proper matching in these variables. 

In the inverse boundary-layer problem the parameter 8 is not known beforehand, and its 
determination requires that the distribution of the displacement thickness be specified: 

i ( 1 -  U/U~)dY=6(X).  (2.10)  
0 

The distribution of the parameters U(0, Y), F(0, Y), T(0, Y) must be specified in the initial 
cross section X = X 0. 

The following condition is necessary in order to match the solutions in the boundary 
layer and in the external flow: 

G ( X ) = u . ( X )  (2 .11)  

[ue(X) is the velocity of the external inviscid flow on the contour correct for the displace- 
ment thickness, i.e., at y = rg • 6g]. The equation of continuity can be used to show that 
the satisfaction of condition (2.11) also guarantees matching of the transverse components 
of the velocity vector. Condition (2.11) enables us to determine 6(X), which can be done 
iteratively: U e and u e are found for a given 6, and if (2.11) is not satisfied, then 6 is 
corrected, etc. 

3. The linear approximation is used in the present study to calculate the external 
flow velocity. For example, in the calculation of flow over a free surface y = r(x) the 
external planar flow is assumed to be potential, and the theory of slender bodies can be 
used to obtain an integral representation for u e [i]: 

In the case of channel flow we assume that w e = Fe/r, i.e., it is swirled according to the 
free vortex law (F e = const) and, accordingly, is also potential flow. To simplify the 
problem, we consider the case of a narrow channel, i.e., (r+ - r_)/r_ ~ i; the flow in the 
meridian plane can then be regarded as planar. The results of numerical solution of the 
equation for the stream function of potential flow by means of the same computer program as 
that used in [3] shows that the velocities on the contour differ by less than 1% in the 
planar and axisymmetrical cases for (r+ - r_)/r_ ~ 0.i. We obtain the following equations 
for the velocity of potential flow in a plane channel with parallel walls along the en- 
trance and exit zones [dr• = 0 at Ixl > IXLl, where x L = O(L)] and with a slightly per- 
turbed contour along the transition zone [Ayr• = 0(6), i.e., this quantity is a small param- 
eter], by analogy with [4]: 

Ue~=U~(Ro+~(K((X--~)/Ro)drv/d~+K~((X_~)/Ro)dri/d~)~)/R(X)._~ (3 .2)  

Here R(X) = r+(X) - r - (X) ;  R0 = R(-~) ;  K(X) = (1 /2 )  sgn (X) ( co th~ lX] /2  - 1),  and K~(X) = 
( 1 / 2 ) s g n ( X ) ( 1  - t a n h w f X l / 2 ) .  Equat ions  (3 .2 )  a re  v a l i d  to w i t h i n  terms O ( [ a y r l 2 ) .  

To calculate the parameters on the contour corrected for the displacement thickness, we 
need to replace r• by r$ • 6g/in Eqs. (3.1) and (3.2). In the numerical calculations the inte- 
grals are evaluated on 'a finite interval, outside of which dr/dX = 0, and the contribution 
of d6/dX can be disregarded. The length of the interval must be determined from the condi- 
tion that the result is independent of the limits of integration. 

Calculations of separation flows according to the above-described direct-inverse method 
have been carried out by the numerical algorithm in [3]. Equations (2.3)-(2.5), and (2.8) 
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are integrated by a finite-difference scheme of second-order precision. The integrals in 
Eqs. (3.1) and (3.2) are calculated by the trapezoidal rule. An iterative procedure [3] 
taking into account the nonlocal character of the relationship of 6 to U e and u e is used to 
find 6(X) according to (2.11). 

4. To assess the possibilities of calculating separation flows in the presence of heat 
transfer, we investigate flow over a cavity, whose shape is described by the equation r(x)/ 
L = -0.I[i - cos2~(x ~ - i)] for 1 ~x~ and r(x) = 0 for x ~ > 2, < i, where x ~ = x/L. 
The Reynolds number is Re = 1.21.104 , the freestream temperature is Te = 71~ and the 
surface temperature is Tw = 56~ i.e., the temperature factor is Tw/Te = 0.96. This flow 
has been investigated experimentally [6] and calculated in the same work on the basis of 
the complete system of Navier--Strokes equations. 

In calculating the velocity distribution U ~ = U/U~ and the excess temperature e = 
(T - Tw)/(T e - Tw) in the cross section x ~ = 0, a Blasius profile with displacement thick- 
ness 60/L = 2.5.10 -2 is specified, and the Prandtl number is assumed to be equal to 0.75. 
A 61 • 60 grid is used to calculate the boundary layer. A solution of the interaction prob- 
lem is obtained by an iterative procedure after 20 iterations; the printout on the digital 
printer of a Unified Series ES-1061 computer is approximately 2 min. 

Figure 2 shows the velocity and excess temperature profiles obtained in the present 
study (solid curves) and the results of measurements (points) and calculations (dashed 
curves) from [6]. Here y0 = 10Y/L, x ~ = 1.0, 1.2, 1.4, and 1.6 (curves 1-4). The results 
calculated by means of the boundary-layer equations are in good agreement with those ob- 
tained on the basis of the Navier-Stokes equations. The correspondence between the cal- 
culated and measured velocity profiles is also fully satisfactory. The agreement is not 
so good between the calculated and experimental temperature profiles in the separation zone; 
the discrepancies are probably attributable to transient phenomena in the experiment (Saidi 
et al. [6] mention unsteadiness on the part of the flow), which are ignored in the calcula- 
tions. 

The streamline pattern shown in Fig. 3, where curves 1-4 correspond to stream functions 
~/U~L = 0.02, -0.01, -0.002, 0.0005. A primary vortex fills up most of the cavity, and a 
small secondary vortex is formed on the bottom. The same structure has been obtained [6] 
by means of the Navier-Stokes equations. Figure 4 shows the pattern of isographs of the 
excess temperature 8 = 0.i, 0.04, 0.01, 0.005 (curves 1-4, respectively), where the location 
of the reattachment point is indicated by an arrow. Clearly, the isographs bunch up in the 
vicinity of this point, consistent with the increased heat flux in the region. 

On the whole, we can conclude that the boundary-layer equations can be used to describe 
flows with thin separation zones in the presence of heat transfer within the same error limits 
as when the Navier-Stokes equations are used. 

5. We now consider the self-similar solutions of the system (2.3), (2.4), (2.8) in the 
presence of swirl. The self-similar solutions of the boundary-layer equations with swirl 
have been investigated previously [7] for nonseparation flow regimes and for a constant 
pressure across the layer. The additional term in Eq. (2.8) restricts the class of admis- 
sible self-similar solutions, but then these solutions have somewhat different properties 
anyway. It is also interesting to investigate self-similar solutions corresponding to flow 
with reverse currents. 

We assume below that the external flow is swirled according to the free vortex law, i.e., 
F e = const. In this case the system (2.3), (2.4), (2.8) has self-similar solutions under 
the condition r = r 0 = const, U e = U0X I/s. The solutions form a single-parameter family, 
whose parameter depends on F e. However, if r = r 0 + rIX 2/5 and riX 2~5 ~ r0, we can disregard 
terms containing riX2/5/r 0 in Eq. (2.8), whereupon we obtain an auxiliary two-parameter family 
of self-similar solutions, in which the solutions of the first type are subsumed as a special 
case. 

The self-similar solutions have the form 

= (3/5Uo~v) 1 / 2 r / x v s ,  U/U~ = / '  (n),  
(5.1) 

V = - ( (3 /5Uo/~)  '/2/X2/S) ( / - -  2/3n/' (n)) ,  F/F~ = g(n) ,  

where the prime signifies differentiation with respect to the variable q. In these variables 
Eqs. (2.3), (2.4), (2.8) and the boundary conditions (2.9) are transformed as follows: 
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(5.3) 
(5.4) 

o~2/o, -72 (5v/3Uo//2; ~ 3 Here 70 +-I~/~176 71 > 0 correspond to the boundary layer = -- = 2Feq/3%U0; values of 70 
on the exterior side of a surface of revolution (or the lower wall of a channel), and Y0 < 0 
corresponds to the boundary layer on the interior side (or the upper wall of a channel). 

The sign of 71 is determined by the slope of the generatrix of the surface of revolution 
relative to the axis of revolution: 71 > 0 if the generatrix is slanted away from the axis, 
and 71 < 0 if the generatrix is slanted toward the axis. Without swirl (70 = 71 = O) the 
self-similar solution corresponds to the Faulkner-Skan self-similar solution with self- 
similarity parameter $ = 1/3. If 7o = 0 and Yi ~ 0, Eqs. (5.2)-(5.4) coincide with the self- 
similar equations in [7]. 

Since 0 ~g ~ I , the signs of Y0 and 7i determine the sign of the swirl-induced longitudi- 
nal pressure gradient. Swirl tends to accelerate the flow in the boundary layer on the in- 
terior side of a surface of revolution (7o < O) or when the generatrix of the surface slants 
toward the axis (7i < 0). In this case the velocity inside the boundary layer can be greater 
than the external flow velocity. Swirl tends to decelerate the flow in the boundary layer and 
can induce separation on the exterior side of a surface of revolution (70 > O) or when the 
generatrix of the surface slants away from the axis (Yi > 0), even on a cylindrical surface 
and in the presence of accelerated external flow. It is evident from these considerations 
that the onset of a separation zone on the lower wall of an annular cylindrical channel will 
be inevitable as the swirl intensity increases, whereas the flow on the upper wall will be 
accelerated. 

To determine the range of parameters in which self-similar solutions with reverse currents 
are possible, we examine two cases: Y1 = 0, 70 > 0 and 70 = 0, 71 > 0. The system of equa- 
tions (5.2)-(5.4) is integrated numerically by a finite-difference procedure similar to the 
numerical method used to solve the inverse problem for nonself-similar solutions; the analog 

of the displacement thickness in this case is the quantity S(i --/')dN. The quantity T o = 
O 

f"(0), which is proportional to the frictional stress on the wall, is shown in Fig. 5 as a 
function of the parameters 70 (curve i) and Yi (curve 2). Also shown in the figure for com- 
parison is the well-known dependence of T o on (-$), where $ is the self-similarity parameter 
in the Faulkner-Skan solution (curve 3). Solutions exist for 70 J 0.265 and 71J 0.660. 
These limiting values are branch points of the solutions; a single value of Y0 (71) corre- 
sponds to solutions with and without reverse currents, i.e., the properties of these solu- 
tions are qualitatively the same as those of the Faulkner-Skan solutions. 

Inasmuch as ?0 ~(F~/U~)2L / ro ,  Rel/2 and ?~ N (Fe/Ue~)2(A~r/ro), the constraints on Y0 and 71 by 
virtue of the conditions r 0 = O(L) and Ayr = 0(6) yield the following upper bound on the 
possible swirl intensity: 

Fe/Ue~ ~ constRe '/4. ( 5 .5 )  

It occurs when swirl induces an unfavorable longitudinal pressure gradient. As mentioned, 
this situation prevails at the lower wall, so that condition (5.5) determines the maximum 
attainable swirl intensity in a channel according to the free vortex law in the given approxi- 
mation. 
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6. The qualitative results obtained on the influence of swirl from an analysis of the 
self-similar solutions are corroborated by the solution of the viscous-inviscid interaction 
problem according to the direct-inverse method. We now discuss flow in a dogleg channel 
(Fig. ib), whose wall contours are given by the relations r_(x~ = i0 for x ~ < 2, r_(x~ 
L = I0 + 0.08(x ~ - 2)[3 - 2(x ~ - 2)] for 2~x~ , and r_(x~ = 10.08 for x ~ > 3; r+(x~ 
L = r_(x~ + i. The Reynolds number is equal to 6.25"!0 a, the flow core is assumed to be swirled 
according to the free vortex law, and the swirl intensity is varied over the interval 0 ~ 
Fe/U~r_'~ 5. The flow temperature is assumed to be constant, i.e., heat transfer is ignored. 
In the initial cross section (x ~ = 0) the velocity in the flow core is assumed to be constant 
across the channel, and the distributions of the velocity U and the circulation F are speci- 
fied by a Blasius profile, where the displacement thickness ~_/L = 5+/L = 3.10 -2 . A 150 • 60 
differencing grid is used to compute the boundary layers. Approximately 15 iterations are 
required to obtain a solution of the interaction problem, and the time to compute one set of 
results (for a given swirl regime) is approximately 5 min on the ES-1061 computer. 

Figure 6 shows the results of friction calculations from the longitudinal component of 
the velocity on the lower wall (curves 1-3) and upper wall (curve 4) of a channel, where 
t ~ = vSU/SYIx,y=0/U~, and Fe/U~r_ = 0, i, 4, 4 (curves 1-4, respectively). Clearly, un- 
swirled channel flow does not separate, because the cross section of the channel remains 
essentially constant. The influence of swirl at moderate intensities (Fe/U~r_ = 1) is in- 
significant, and the results scarcely differ from the preceding case. A further increase 
in the swirl intensity (Fe/U~r_ = 4) leads to flow separation. Since the angle between the 
generatrices of the upper and lower walls of the channel and the axis is positive in the 
transition section (dogleg), swirl induces flow separation on both the lower and the upper 
wall (curves 3 and 4 in Fig. 6). Following the dogleg, the transverse pressure difference 
creates a second separation zone on the lower wall (curve 3). 

In an attempt to increase the swirl intensity to Fe/U~r_ = 5, we have been unable to 
obtain a convergent solution of the interaction problem, evidently because the upper bound 
(5.5) is reached in this case (Re ~/4 = 9 in the given example). 

The foregoing results show that the boundary-layer equations can be used to calculate 
heat transfer in thin closed separation zones and to determine the conditions under which 
flow separation takes place in the presence of swirl. Calculations can be performed with 
very small expenditures of computer time in situations where the given approximation is ap- 
plicable. 
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